Main Article Content

Abstract

This study is to build a time-delay SDIR model on the case of student interest in Organizations and Government Internship Programs, analyze the model and conduct a model simulation to predict the level of student interest cases in Organizations. This study is a theoretical and applied study. Analysis of the time-delay SDIR model of the case of student interest in Organizations, while the model simulation uses Maple Software. The population of the study was active students of FMIPA UNM, with a sample size of 1029 students obtained using the Sloving technique. The results of this study are a mathematical model of SDIR on the case of student interest in Organizations which is a system of differential equations. The model analysis provides a value of the free equilibrium point of the case of student interest in Organizations and a stable endemic equilibrium point. The results also found that the basic reproduction number value for cases without a solution would produce R0n = 9.912507841, which means that in social cases where one individual can influence 9-10 people in their environment to hesitate to participate in organizational activities or internship programs, but on the other hand if the case is given a solution, it will produce R0s = 0.2737372211, which means that there is no psychological spread, where each individual does not influence other individuals.

Keywords

SDIR Model Student Interest Equilibrium Point Basic Reproduction Number

Article Details

References

  1. [1] A. M. Jambak, D. Lase, E. Telaumbanua, and P. Hulu, “Analisis faktor-faktor yang mempengaruhi resistensi pegawai terhadap perubahan organisasi di Kantor Pengadilan Agama Gunungsitoli,” Tuhenori J. Ilm. Multidisiplin, vol. 1, no. 1, pp. 22–37, Nov. 2023, doi: 10.62138/tuhenori.v1i1.8.
  2. [2] H. Hasanah, F. Gebina, A. Chafshah, A. Hammami, and M. I. Anshori, “Analisis Pelatihan Dan Pengembangan Karyawan,” JIMaKeBiDi, vol. 1, no. 2, pp. 171–184, May 2024.
  3. [3] R. O. A. Putri, D. M. Sholikhah, and T. Supriyadi, “Menjelajahi Pola Konflik Keluarga Dalam Kenakalan Remaja: Tinjauan Literatur Dalam Psikologi Kepolisian,” IJM, vol. 2, no. 6, pp. 256–267, Jul. 2024.
  4. [4] N. A. A. Zahra, “Inkubasi Bisnis untuk Mahasiswa UNNES: Mendorong Lahirnya Wirausahawan Muda yang Inovatif dan Berdaya Saing,” J. Potensial, vol. 3, no. 2, pp. 162–177, 2024.
  5. [5] N. Z. Arrizal, L. Ramli, and S. D. Putra, “Aspek Hukum Peserta Pemagangan dalam Negeri Berdasarkan Permenaker Nomor 6 Tahun 2020,” vol. 12, 2023.
  6. [6] M. Abdy, S. Side, S. Annas, W. Nur, and W. Sanusi, “An SIR epidemic model for COVID-19 spread with fuzzy parameter: the case of Indonesia,” Adv. Differ. Equ., vol. 2021, no. 1, p. 105, Dec. 2021, doi: 10.1186/s13662-021-03263-6.
  7. [7] S. Annas, M. I. Pratama, M. Rifandi, W. Sanusi, and S. Side, “Stability analysis and numerical simulation of SEIR model for pandemic COVID-19 spread in Indonesia,” Chaos, Solitons & Fractals, vol. 139, p. 110072, Oct. 2020, doi: 10.1016/j.chaos.2020.110072.
  8. [8] A. Putri, M. E. Baining, and F. Ramli, “Faktor-Faktor Yang Mempengaruhi Motivasi Mahasiswa Menjadi Enterpreneur Syariah,” JMPAI, vol. 2, no. 3, pp. 35–54, Mar. 2024.
  9. [9] I. Tabroni, “KEPEMIMPINAN DI SEKOLAH,” Penerbit Tahta Media, Jun. 2023.
  10. [10] D. Ulhaq, “Analisis Faktor yang Mempengaruhi Minat Menjadi Guru terhadap Mahasiswa Pendidikan Ekonomi UNNES,” J. Majemuk, vol. 3, pp. 428–440, 2024.
  11. [11] S. Side, W. Sanusi, M. K. Aidid, and S. Sidjara, “Global Stability of SIR and SEIR Model for Tuberculosis Disease Transmission with Lyapunov Function Method,” Asian J. of Appl. Sci., vol. 9, no. 3, pp. 87–96, Jun. 2016, doi: 10.3923/ajaps.2016.87.96.
  12. [12] Nurhaeda, S. Anas, and S. Side, “Analysis and simulation of mathematical model for typhus disease in Makassar,” J. Phys.: Conf. Ser., vol. 1918, no. 4, p. 042025, Jun. 2021, doi: 10.1088/1742-6596/1918/4/042025.
  13. [13] H. Maryam, M. Abdy, Alimuddin, and S. Side, “SEIAS-SEI model on asymptomatic and super infection malaria with imperfect vaccination,” J. Phys.: Conf. Ser., vol. 1918, no. 4, p. 042028, Jun. 2021, doi: 10.1088/1742-6596/1918/4/042028.
  14. [14] A. Anwar, R. Syam, M. I. Pratama, and S. Side, “SEIRS model analysis for online game addiction problem of mathematics students,” J. Phys.: Conf. Ser., vol. 1918, no. 4, p. 042024, Jun. 2021, doi: 10.1088/1742-6596/1918/4/042024.
  15. [15] M. Asri, S. Sidjara, W. Sanusi, S. Side, and M. I. Pratama, “Analysis and Solution of The SEIRS Model for The Rubella Transmission with Vaccination Effect using Runge-Kutta Method,” J. Phys.: Conf. Ser., vol. 1899, no. 1, p. 012090, May 2021, doi: 10.1088/1742-6596/1899/1/012090.
  16. [16] S. Side, M. Abdy, F. Arwadi, and W. Sanusi, “SEIRI Model analysis using the mathematical graph as a solution for Hepatitis B disease in Makassar,” J. Phys.: Conf. Ser., vol. 1899, no. 1, p. 012091, May 2021, doi: 10.1088/1742-6596/1899/1/012091.
  17. [17] W. Sanusi, M. I. Pratama, M. Rifandi, S. Sidjara, Irwan, and S. Side, “Numerical Solution of SIRS model for Dengue Fever Transmission in Makassar City with Runge Kutta Method,” J. Phys.: Conf. Ser., vol. 1752, no. 1, p. 012004, Feb. 2021, doi: 10.1088/1742-6596/1752/1/012004.
  18. [18] C. Yang, J. Wang, and Department of Mathematics, University of Tennessee at Chattanooga, 615 McCallie Ave., Chattanooga, TN 37403, USA, “A mathematical model for the novel coronavirus epidemic in Wuhan, China,” Math. Biosci. Eng., vol. 17, no. 3, pp. 2708–2724, 2020, doi: 10.3934/mbe.2020148.
  19. [19] T. Singhal, “A Review of Coronavirus Disease-2019 (COVID-19),” Indian J. Pediatr., vol. 87, no. 4, pp. 281–286, Apr. 2020, doi: 10.1007/s12098-020-03263-6.
  20. [20] S. S. and M. S. M. Noorani, “SEIR Model for Transmission of Dengue Fever in Selangor Malaysia,” Int. J. Mod. Phys. Conf. Ser., vol. 09, pp. 380–389, Jan. 2012, doi: 10.1142/S2010194512005454.
  21. [21] F. Etbaigha, A. R. Willms, and Z. Poljak, “An SEIR model of influenza A virus infection and reinfection within a farrow-to-finish swine farm,” PLoS ONE, vol. 13, no. 9, p. e0202493, Sep. 2018, doi: 10.1371/journal.pone.0202493.
  22. [22] E. Soewono and A. K. Supriatna, “A Two-dimensional Model for the Transmission of Dengue Fever Disease,” p. 1.
  23. [23] S. Side and S. Noorani, “A SIR Model for Spread of Dengue Fever Disease (Simulation for South Sulawesi, Indonesia and Selangor, Malaysia),” vol. 9, no. 2, p. 10, 2013.
  24. [24] M. Derouich, A. Boutayeb, and E. Twizell, “A model of dengue fever,” BioMed Eng. OnLine, vol. 2, no. 1, p. 4, Dec. 2003, doi: 10.1186/1475-925X-2-4.
  25. [25] Y. M. Rangkuti, S. Side, and M. S. Noorani, “Numerical Analytic Solution of SIR Model of Dengue Fever Disease in South Sulawesi using Homotopy Perturbation Method and Variational Iteration Method,” p. 15.
  26. [26] W. Nur, H. Rachman, N. M. Abdal, M. Abdy, and S. Side, “Improving the spread model of dengue fever with different parameters and control strategy,” AIP Conf. Proc., vol. 2293, no. 1, p. 020016, Jan. 2020, doi: 10.1063/5.0023276.