Main Article Content
Abstract
Climate change and the increasing frequency of extreme weather events have intensified the risk of hydrometeorological disasters, including flooding, particularly in regions experiencing rapid deforestation and land-use conversion. Mamuju Regency is one of the areas with high flood vulnerability due to its biophysical characteristics and accelerated land-use changes. This study aims to analyze the current flood susceptibility, predict land-use changes up to 2029 using the Cellular Automata–Markov Chain (CA–Markov) model, and assess how these changes influence future flood-prone areas. The research employs secondary datasets and Landsat satellite imagery, which were processed using Geographic Information Systems (GIS). Flood susceptibility analysis was conducted based on six key parameters—rainfall, slope, elevation, soil type, land use, and river proximity—each weighted using the Weighted Scoring method. The results indicate that in 2019, high-vulnerability areas covered approximately 279.84 km² and are projected to increase to 365.05 km² by 2029. This increase is primarily driven by declining forest cover and expanding built-up areas, which reduce infiltration capacity and intensify surface runoff. The predicted distribution of flood-prone areas shows that high-risk zones are concentrated in western Mamuju, particularly in rapidly developing subdistricts such as Kalukku and Mamuju. These findings highlight the need for stricter land-use control, enhanced watershed management, and spatially integrated flood mitigation strategies to reduce disaster risks in Mamuju Regency.
Keywords
Article Details
References
- Bambang, B, U. dan Rima, D, S. (2012). Pemintakatan Risiko Bencana Banjir Bandang di Kawasan Sepanjang Kali Sampean. Kabupaten Bondowoso. Jurnal Teknik ITS, 1(1), 58-62.
- BNPB. (2019). Data Bencana Indonesia. Badan Nasional Penanggulangan Bencana.
- Canute, H. dan Lawrence, W, M. 2017. A Markovian and cellular automata land-use change predictive model of the Usangu Catchment. International Journal of Remote Sensing, 38(1), 64-81.
- Darmawan., Kurnia., Hani’ah., Andri, S. (2017). Analisis Tingkat Kerawanan Banjir di Kabupaten Sampang Menggunakan Metode Overlay dengan Scoring Berbasis Sistem Informasi Geografis. Jurnal Geodesi Undip, 6(1), 31-40.
- Du, S., Huang, X., & Yu, X. (2015). Quantifying the impact of impervious surface location on flood peak discharge in urban areas. Journal of Hydrology, 531, 268–282.
- Eastman, J, R. 2009. Idrisi Taiga: Guide to GIS and Image Processing. Clark University.
- Fitriyanto., Bobby, R., Muhammad, H., Hadiyanto. (2018). Model Prediksi Perubahan Penggunaan Lahan dengan Pendekatan Sistem Informasi Geografis dan Cellular Automata Markov Chain: Studi Kasus Kabupaten Rokan Hulu, Provinsi Riau. Prosiding Seminar Nasional Aplikasi Sains dan Teknologi. Yogyakarta 15 September 2018.
- Fu, X., Wang, X., Yang, Y., Zhang, J. (2018). Cellular automata for simulating land use changes based on support vector machines and adaptive neighborhood. Ecological Modelling, 374. 63–75.
- Hamad, R., Heiko, B., Kamal, K. (2018). Predicting Land Use/Land Cover Changes Using CA-Markov Model under Two Different Scenario. Sustainability, 10(10), 3421.
- Hansen, M. C., Potapov, P., Moore, R., Hancher, M., Turubanova, S., Tyukavina, A., Thau, D., Stehman, S., Goetz, S., Loveland, T., Kommareddy, A., Egorov, A., Chini, L., Justice, C. O., & Townshend, J. (2013). High-Resolution Global Maps of 21st-Century Forest Cover Change. Science (New York, N.Y.), 342, 850–853.
- Kusumo, P. dan Evi, N. (2016). Zonasi Tingkat Kerawanan Banjir dengan Sistem Informasi Geografis Pada Das Cidurian Kab.Serang, Banten. Jurnal String, 1(1). 29-38.
- Mondal., M, S., Nayan, S., P, K, Garg., Martin, K. (2016). Statistical independence test and validation of CA Markov land use land cover (LULC) predictionresults. The Egyptian Journal of Remote Sensing and Space Sciences, 19(2). 259-272.
- Narmilan, A. (2018). Structural Measures for Flood Risk Mitigation in the Agricultural Field: A Review. Conference: ACEPS 2018, At Faculty of Engineering, University of Ruhuna, Sri Lanka, 185-190.
- Rahardian, A. dan Buchori, I. (2016). Dampak Perubahan Penggunaan Lahan Terhadap Limpasan Permukaan dan Laju Aliran Puncak Sub-DAS Gajahwong Hulu, Kabupaten Sleman. Jurnal Pembangunan Wilayah dan Kota, 12(2). 127-139.
- Ramadhan, A. (2017). Profil Deforestasi di Sulawesi Selatan dan Sulawesi Barat. Skripsi tidak diterbitkan. Fakultas Kehutanan Universitas Hasanuddin. Makassar.
- Rosyidie, A. (2013). Banjir: Fakta dan Dampaknya, Serta Pengaruh dari Perubahan Guna Lahan. Jurnal Perencanaan Wilayah dan Kota, 24(3), 241-249.
- Silva, M. F., Carneiro D. C. J., & Serra, F. (2018). Secondary Data in Research – Uses and Opportunities. PODIUM Sport, Leisure and Tourism Review, 7, I–IV.
- Singh, Sudhir K., Sk Mustak., Prashant K., Srivastava., Szilárd S., Tanvir I. 2015. Predicting Spatial and Decadal LULC ChangesThrough Cellular Automata Markov Chain ModelsUsing Earth Observation Datasets and Geo-information. Environmental Processes Vol. 2 Issue. 1.
- Wismarini, T, D., Muji, S. (2015) Penentuan Tingkat Kerentanan Banjir Secara Geospasial. Jurnal Teknologi Informasi DINAMIK, 20(1), 57-76.
- Yani, N., Syamsu, R., Asar, S, M. (2018). Model Spasial Deforestasi berdasarkan Aspek Sosial di Sulawesi Selatan dan Sulawesi Barat Periode 1990-2016. Skripsi. Fakultas Kehutanan Universitas Hasanuddin, Makassar.
