Main Article Content

Abstract

The Blumberg model is one of the logistic models. The advantage of the Blumberg model is the flexibility of the inflection point. The Blumberg model is believed to be suitable for modeling the growth of living organs. In this article, we estimate the parameters of the Blumberg model using simulated annealing algorithm. The simulated annealing algorithm is a heuristic optimization method based on the metal annealing process. The data used is Broiler  daily weight data. The model obtained fits the daily weight data of Broiler. Our results show that the closer the cooling schedule factor to 1, the smaller the error. In addition, we must carefully select the initial temperature. The selection of the initial temperature that is not suitable drives the error to enlarge.

Keywords

Blumberg model;simulated annealing algorithm,; parameter estimation; Broiler heuristic method

Article Details

References

  1. [1] Windarto, S. W. Indratno, N. Nuraini, and E. Soewono, “A comparison of binary and continuous genetic algorithm in parameter estimation of a logistic growth model,” 2014, pp. 139–142. doi: 10.1063/1.4866550.
  2. [2] Windarto, Eridani, and U. D. Purwati, “A comparison of continuous genetic algorithm and particle swarm optimization in parameter estimation of Gompertz growth model,” 2019, p. 020017. doi: 10.1063/1.5094281.
  3. [3] W. Windarto and E. Eridani, “Comparison of particle swarm optimization and firefly algorithm in parameter estimation of Lotka-Volterra,” 2020, p. 050008. doi: 10.1063/5.0017245.
  4. [4] E. T. Chiyaka and W. Garira, “Mathematical analysis of the transmission dynamics of schistosomiasis in the human-snail hosts,” J. Biol. Syst., vol. 17, no. 3, pp. 397–423, Sep. 2009, doi: 10.1142/S0218339009002910.
  5. [5] D. Darmawati, W. Nur, and M. Musafira, “Penaksiran Parameter Model SIS Stokastik Penyebaran Penyakit Malaria Dengan Metode Stepest Descent,” SAINTIFIK, vol. 5, no. 2, pp. 145–146, Jul. 2019, doi: 10.31605/saintifik.v5i2.297.
  6. [6] W. Nur and Darmawati, “Estimasi Parameter Model SIR dengan Algoritma Genetik,” J. Math. Theory Appl., vol. 1, no. 2, pp. 64–68, 2019.
  7. [7] N. Pham, A. Malinowski, and T. Bartczak, “Comparative Study of Derivative Free Optimization Algorithms,” IEEE Trans. Ind. Informatics, vol. 7, no. 4, pp. 592–600, Nov. 2011, doi: 10.1109/TII.2011.2166799.
  8. [8] A. A. Idris and S. S. R. Muhammad, “A Simulation Study on The Simulated Annealing Algorithm in Estimating The Parameters of Generalized Gamma Distribution,” Sci. Technol. Indones., vol. 7, no. 1, pp. 84–90, Jan. 2022, doi: 10.26554/sti.2022.7.1.84-90.
  9. [9] S. Afandizadeh, S. Zahabi, and N. Kalantari, “Estimating the parameters of Logit Model using simulated annealing algorithm: case study of mode choice modeling of Isfahan,” Int. J. Civ. Eng., vol. 8, no. 1, pp. 68–78, 2010.
  10. [10] A. A. Blumberg, “Logistic growth rate functions,” J. Theor. Biol., vol. 21, no. 1, pp. 42–44, Oct. 1968, doi: 10.1016/0022-5193(68)90058-1.
  11. [11] J. Leonel Rocha and S. M. Aleixo, “Dynamical analysis in growth models: Blumberg’s equation,” Discret. Contin. Dyn. Syst. - B, vol. 18, no. 3, pp. 783–795, 2013, doi: 10.3934/dcdsb.2013.18.783.
  12. [12] S. Zhan, J. Lin, Z. Zhang, and Y. Zhong, “List-Based Simulated Annealing Algorithm for Traveling Salesman Problem,” Comput. Intell. Neurosci., vol. 2016, pp. 1–12, 2016, doi: 10.1155/2016/1712630.