Main Article Content
Abstract
The development of geometric studies is very rapid, including fractal geometry. A fractal is a geometric shape that fulfills the properties of the fractal dimension. If you look at a fractal at first glance, it has an irregular shape, but if you look further, there is a regularity. One of the properties of fractals is self-similarity which occurs when a fractal is enlarged. The fractal form has a pattern obtained from iterating a function with infinite repetition. Among the fractal shapes there is the Sierpinski carpet shape. Fractals in 2D form can be transformed using geometric concepts into 3D fractals. Fractal shapes can be applied for cultural development, namely to form wallpaper motifs. Fractal geometric motifs are obtained from iterating a function with the help of Wolframe Mathematica.
Keywords
Article Details
References
- [1] E. Susanti, “Aplikasi Himpunan Julia dalam Membuat Rancangan Motif Fraktal Songket Palembang,” Jurnal Matematika, vol. 6, no. 2, pp. 114–118, 2016.
- [2] David. A. Brannan, M. F. Esplen, and J. J. Gray, Geometry, 2nd ed. Cambridge: Cambridge University Press, 2012.
- [3] Roskawati, M. Ikhsan, and D. Juandi, “Analisis Penguasaan Siswa Sekolah Menengah Atas pada Materi Geometri,” Jurnal Didaktik Matematika, vol. 2, no. 1, pp. 64–70, 2015.
- [4] B. B. Mandelbrot, Fractals and the Geometry of Nature. San Francisco: W. H. Freeman, 1982.
- [5] J. Sampurno and I. D. Faryuni, Metode Analisis Fraktal. Yogyakarta: Deepublish, 2016.
- [6] N. I. Manik and Manal, “PENGGUNAAN MODEL FRAKTAL UNTUK PENGEMBANGAN MOTIF ULOS,” Jurnal Mat Stat, vol. 12, no. 2, pp. 143–151, Jul. 2012.
- [7] Saefurrohman and D. U. N. Handayani, “Desain Motif Batik Dengan Metode Fraktal Dan Algoritma L-System untuk Membangun Pustaka Batik Wali,” Jurnal Teknologi Informasi DINAMIK, vol. 21, no. 1, pp. 42–51, 2016.
- [8] K. Falconer, Fractal Geometry Mathematical Foundations and Applications. New York: John Wiley & Sons, 1990.
- [9] J. Jauhari, “Pengembangan Perangkat Lunak Pembangkit Geometri Fraktal Berbasis Bilangan Kompleks (PLFraKom),” Jurnal GENERIC, vol. 5, no. 1, pp. 39–44, 2010.
- [10] A. K. Sidhu and J. S. Sivia, “A Novel Design of Wideband Koch like Sided Sierpinski Square Carpet Multifractal Antenna,” ACES JOURNAL, vol. 33, no. 8, pp. 873–879, Aug. 2018.