Main Article Content

Abstract

Anthrax is an infectious disease caused by the bacterium Bacillus anthracis. This disease causes a fairly high mortality rate in livestock populations that can threaten food security in a region. Therefore, it is necessary to prevent and control its spread. This study aims to examine the model of the spread of anthrax disease in a livestock population by considering indirect transmission and the use of disinfectants. The constructed model is expressed as a system of ordinary differential equations. Dynamical analysis is carried out to identify the stability properties of the disease-free equilibrium point. The results of the dynamical analysis show that the disease-free equilibrium point is conditionally stable, namely when the basic reproduction number is less than one. In addition, the results of numerical experiments show that the use of disinfectants has a significant effect on the dynamics of the spread of anthrax disease, namely the higher the rate of bacterial death due to disinfectants, the fewer cases of anthrax. This study shows that the use of disinfectants can be an effective strategy to control the spread of anthrax disease in livestock populations.

Keywords

Stability Analysis Disifectant Anthrax Model indirect transmission

Article Details

References

  1. [1] Dewi, A, L., & Mplasi, L. P. Implementasi Kebijakan Undang-Undang No.41 Tahun 2014 atas perubahan Undang-Undang Nomor 18 Tahun 2009 Tentang Peternakan dan Kesehatan Hewan terhadap Pelaku Usaha Agribisnis Peternakan di Kabupaten Konawe Selatan., vol. 3, no. 2, pp 144-148, (2023), doi: https://doi.org/10.57250/ajsh.v3i2.241
  2. [2] Prawandani, N., Toaha, S.,Kasbawati. VSEIR Mathematical Model on Anthrax Disease Dissemination in Animal Population with Vaccination and Treatment Effect,J. Mat. Stat. dan Komputasi, vol. 17, no. 1, pp. 14–25, 2020, doi: 10.20956/jmsk.v17i1.10050.
  3. [3] A. Alam and S. Sugiarto, Analisis sensitivitas Model Matematika Penyebaran Penyakit Antraks Pada Ternak dengan Vaksinasi, Karantina dan Pengobatan. J. Ilm. Mat. Dan Terap., vol. 19, no. 2, pp 180-191, 2022, doi: https://doi.org/10.22487/2540766X.2022.v19.i2.16017
  4. [4] Megawati, R. Ratianingsih, and Hajar, Analisis Kestabilan Penyebaran Penyakit Antraks Pada Populasi Hewan Dengan Pemberian Vaksinasi: Studi Kasus Untuk Infeksi Pada Populasi Manusia,J. Ilm. Mat. Dan Terap., vol. 16, no. 2, pp. 172–184, 2020, doi: 10.22487/2540766x.2019.v16.i2.14989.
  5. [5] Malik et al., Sensitivity analysis of COVID-19 with quarantine and vaccination: A fractal-fractional model,Alexandria Eng. J., vol. 61, no. 11, pp. 8859–8874, 2022, doi: 10.1016/j.aej.2022.02.024.