Main Article Content

Abstract





Poverty is a multidimensional concept that can not only be seen from an economic perspective, but can also be seen from a social, cultural and political perspective. Poverty is generally expressed as a static concept with the amount of poverty as a description of welfare conditions at a certain time. In reality, poverty has a time period that is never cut off and has a continuous pattern over time. The Indonesian government is committed to efforts to eradicate poverty in order to reduce Indonesia's poverty rate. One way that can be done is by allocating aid to the community. Grouping is carried out by cluster analysis using the Gaussian Mixture Model method with the Expectation-Maximization (EM) algorithm. The optimal number of clusters in the Gaussian Mixture Model uses the Bayesian Information Criterion (BIC) method. Based on the research carried out, the results of the analysis of cluster grouping using the Gaussian Mixture Model method were obtained with the smallest BIC value, namely -397.6876 with a total of 2 clusters.





Keywords

Cluster Gaussian Mixture Model Poverty

Article Details

References

  1. [1] S. W. Mustamin and Abdillah, Kemiskinan Kota (Tinjauan Ekonomi Makro terhadap Kemiskinan di Kota Makassar). Makassar: Universitas Muhammadiyah Makassar, 2021.
  2. [2] A. Suryahadi and S. Sumarto, The Chronic Poor, the Transient Poor, and the Vulnerable in Indonesia Before and After the Crisis. Jakarta: The SMERU Research Institute, 2001.
  3. [3] R. Purwono, W. W. Wardana, T. Haryanto, and M. Khoerul Mubin, “Poverty dynamics in Indonesia: empirical evidence from three main approaches,” World Dev Perspect, vol. 23, pp. 1–9, Sep. 2021, doi: 10.1016/j.wdp.2021.100346.
  4. [4] L. A. Pujiwati, “Masyarakat Indonesia masih rentan jatuh miskin, apa penyebabnya?,” The Conversation, Feb. 06, 2023. Accessed: Jan. 04, 2024. [Online]. Available: https://theconversation.com/masyarakat-indonesia-masih-rentan-jatuh-miskin-apa-penyebabnya-198679
  5. [5] Badan Pusat Statistik, “Penjelasan Data Kemiskinan,” Jakarta, Jan. 2011.
  6. [6] Badan Pusat Statistik, “Persentase Penduduk Miskin (P0) Menurut Provinsi dan Daerah (Persen) 2023,” Bada Pusat Statistik. Accessed: Feb. 09, 2024. [Online]. Available: https://www.bps.go.id/id/statistics-table/2/MTkyIzI=/persentase-penduduk-miskin--maret-2023.html
  7. [7] Liputan6, “Angka Kemiskinan Turun di Mei 2023, Tapi Belum Pulih ke Level Sebelum Pandemi,” Liputan6.com. Accessed: Dec. 05, 2023. [Online]. Available: https://www.liputan6.com/bisnis/read/5346506/angka-kemiskinan-turun-di-mei-2023-tapi-belum-pulih-ke-level-sebelum-pandemi
  8. [8] A. Purwanti, “Tantangan Mengentaskan Penduduk Miskin di Tengah Krisis,” kompas.id, Jun. 23, 2021. Accessed: Jan. 04, 2024. [Online]. Available: https://www.kompas.id/baca/riset/2021/06/23/tantangan-mengentaskan-penduduk-miskin-di-tengah-krisis/
  9. [9] B. Sumargo, Validitas dan Reliabilitas Pengukuran Kemiskinan. Bogor: Institut Pertanian Bogor, 2002.
  10. [10] E. Widodo, P. Ermayani, L. N. Laila, and A. T. Madani, “Pengelompokkan Provinsi di Indonesia Berdasarkan Tingkat Kemiskinan Menggunakan Analisis Hierarchical Agglomerative Clustering,” Seminar Nasional Official Statistics, vol. 2021, no. 1, pp. 557–566, Nov. 2021, doi: 10.34123/semnasoffstat.v2021i1.971.
  11. [11] J. F. Hair, W. C. Black, B. J. Babin, and R. E. Anderson, “Multivariate Data Analysis Eighth Edition,” 2019. [Online]. Available: www.cengage.com/highered
  12. [12] K. Backhaus, B. Erichson, S. Gensler, R. Weiber, and T. Weiber, Multivariate Analysemethoden, 17th ed. German: Springer Gabler, 2023. [Online]. Available: https://ashcards.springernature.com/login
  13. [13] C. M. Bishop, Pattern Recognition and Machine Learning. UK: Springer, 2006.
  14. [14] P. S. Mann, Introductory Statistics (7th Ed). New York: John Wiley & Sons, 2010.
  15. [15] R. Arnold. Johnson and D. W. Wichern, Applied multivariate statistical analysis. Harlow: Pearson, 2014.
  16. [16] G. J. McLachlan and K. E. Basford, Mixture Model. New York: MARCEL DEKKER, 1988.
  17. [17] M. P. Deisenroth, A. , A. Faisal, and C. S. Ong, Mathematics for machine learning. UK: Cambridge University Press, 2020.
  18. [18] F. Novkaniza, Nico, and R. Al Kafi, “Pemodelan Jumlah Kasus Baru Harian Covid-19 Di Indonesia Menggunakan Gaussian Mixture Model,” Jurnal Riset dan Aplikasi Matematika, vol. 07, no. 02, pp. 116–127, Oct. 2023.