Main Article Content
Abstract
The concept of weak convergence is generated by “weakening” the existing convergence properties in normed spaces. The outcome of this article is to prove the basic properties of weak convergence, the space of weakly convergent sequence is a Banach space and the operators from the space of weakly convergent sequence to other sequence spaces (l1(X),lp(X), linfty(X),S(X) ) and vice versa are linear and bounded .
Keywords
Normed Space, Operator , Space of Weakly Convergent Sequence, Weakly Convergent Sequence
Article Details
References
- [1] R. P. Agarwal, K. Parera, and S. Pinelas, An Introduction to Complex Analysis. Springer New York Dordrecht Heidelberg London, 2010.
- [2] Ariyanto, “Kajian Sifat-Sifat Dual pada Ruang l^p,” Jurnal MIPA FST UNDANA, vol. 8, no. 1, 2010.
- [3] E. Kreyszig, Introductory Functional Analysis with Aplications. John Wiley & Sons, 1998.
- [4] P. D. Lax, Functional Analysis. Wiley-Interscience, 2002.
- [5] H. L. Royden and P. M. Fitzpatrick, Real Analysis : Fourth Edition. Pearson Education Asia Limited and China Machine Ptyress, 2010.
- [6] M. W. Talakua and S. J. Naruru, “Teorema Representasi Riesz-Frechet pada Ruang Hilbert,” Jurnal Barekang, vol. 5, no. 2, pp. 1-8, 2011.
- [7] I. J. Maddox, Elements of Functional Analysis. Cambridge University Press, 1970.