Main Article Content
Abstract
The purpose of this study is to use the Linear Discriminant Analysis (LDA) method to categorize districts and cities in South Sulawesi Province according to their main economic sectors. The Central Statistics Agency (BPS) of South Sulawesi provided data for the period 2019–2023. The dependent variable was classified according to GDP (GRDP) quartiles within economic sectors, while the independent variables were the Labor Force Participation Rate (LBFR), the Number of Business Units (NBE), and the Open Unemployment Rate (OUR). The findings indicate that the most important factors in group differentiation are TPA and TPT. The classification accuracy was only 37.5%, although the model met important assumptions such as normality, homogeneity of covariance, and the absence of multicollinearity. This suggests that the model should be further improved by adding more in-depth predictors or using more differentiated categorization techniques.
Keywords
Article Details
References
- [1] Suradi, “Pertumbuhan Ekonomi dan Kesejahteraan Sosial (Economic Growth And Sosial Welfare),” Puslitbang Kesejaht. Sos., vol. 17, no. 200, 2012.
- [2] M. Jamilah, A. Hasibuan, A. Rusgiyono, and D. Safitri, “Pemodelan Produk Domestik Regional Bruto (PDRB) Di Provinsi Jawa Tengah Menggunakan Bootstrap Aggregating Multivariate Adaptive Regression Splines,” vol. 8, pp. 139–149, 2019.
- [3] R. Johanes and D. Takari, “A review of the tourist industry ’ s role in Indonesia ’ s GDP growth,” vol. 10, no. 1, pp. 8–17, 2024.
- [4] F. Hayati, D. Vionanda, Y. Kurniawati, and T. O. Mukhti, “Comparison of Linear Discriminant Analysis with Robust Linear Discriminant Analysis,” vol. 2, pp. 353–359, 2024.
- [5] S. H. Mahmood and H. H. Khider, “Comparison of Linear Discriminant Analysis and Artificial Neural Networks for Stroke patients Classification Stroke . ةيعانطصلاا ةيبصعلا تاكبشلاو ً طخلا يزييمتلا ليلحتلا ةنراقم ةيغامدلا ةتكسلا ىضرم فينصتل,” vol. 13, no. 2, pp. 208–220, 2023.
- [6] L. Mardiana, D. Kusnandar, and N. Satyahadewi, “Analisis Diskriminan Dengan K Fold Cross Validation Untuk Klasifikasi Air di Kota Pontianak,” vol. 11, no. 1, pp. 97–102, 2022.
- [7] I. Muthahharah, S. M. Meliyana, and A. S. Ahmar, “K Means Cluster for Grouping Regencies / Cities in South Sulawesi Province Based Human Development Index on the 2023,” vol. 4, no. 3, pp. 357–364, 2024.
- [8] D. Kertayuga, E. Santoso, and N. Hidayat, “Prediksi Nilai Ekspor Impor Migas dan Non-Migas Indonesia Menggunakan Extreme Learning Machine (ELM),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 6, pp. 2792–2800, 2021.
- [9] B. J. Babin and R. E. Anderson, Multivariate Data Analysis. 2014.
- [10] P. G. Subhaktiyasa, “PLS-SEM for Multivariate Analysis : A Practical Guide to Educational Research using SmartPLS,” vol. 4, no. 3, 2024.
- [11] K. F. Nimon, “Statistical assumptions of substantive analyses across the general linear model : a mini-review,” vol. 3, no. August, pp. 1–5, 2012, doi: 10.3389/fpsyg.2012.00322.
- [12] M. J. Naufal, D. P. Ompusunggu, R. A. Sinaga, M. Dola, A. Sitohang, and T. N. Gunawan, “A Theoretical Study of Multicollinearity and Linearity in Econometric Models for Economic Research,” vol. 21, no. 1, pp. 43–52, 2025.
- [13] C. Sanjeev, K. Dash, A. Kumar, S. Dehuri, and A. Ghosh, “An outliers detection and elimination framework in classification task of data mining,” Decis. Anal. J., vol. 6, no. May 2022, p. 100164, 2023, doi: 10.1016/j.dajour.2023.100164.
- [14] M. O. Adebiyi, M. O. Arowolo, M. D. Mshelia, and O. O. Olugbara, “applied sciences A Linear Discriminant Analysis and Classification Model for Breast Cancer Diagnosis,” 2022.
- [15] M. Y. Majo, “Unveiling Human Development Index Mediation on Consumption Dynamics,” vol. 13, no. 1, 2024.
- [16] B. S. Utomo and J. Timur, “Analysis of the Quality of Economic Growth in Districts / Cities in East Java,” vol. 3, no. 3, pp. 699–712, 2024.