Main Article Content
Abstract
Indonesia is one of the countries with a high level of vulnerability to natural disasters, making accurate risk mapping essential to support mitigation planning. This study aims to cluster the provinces of Indonesia based on disaster occurrence characteristics using a hybrid approach of Self-Organizing Maps (SOM) and K-Means. The data were obtained from the Indonesian National Disaster Management Agency (BNPB), covering the frequency and types of disasters such as floods, extreme weather, eruptions, abrasion, earthquakes, forest/land fires, droughts, and landslides. The SOM representation results were clustered using K-Means, with the optimal number of clusters determined through the evaluation of the Davies–Bouldin index, Silhouette coefficient, and connectivity measure. The analysis revealed that two clusters provided the best separation: Cluster 1 includes most provinces with medium to low multi-hazard risk, while Cluster 2 consists of West Java, Central Java, and East Java, which have high hydrometeorological risk. This hybrid SOM and K-Means approach successfully identifies the spatial patterns of disaster risk and can serve as a reference for the government in formulating region-based mitigation strategies.
Keywords
Article Details
References
- [1] S. Risky, D. Permana, and D. Fitria, “Self Organizing Maps Method for Grouping Provinces in Indonesia Based on the Landslide Impact,” UNP J. Stat. Data Sci., vol. 1, no. 1988, pp. 180–187, 2023.
- [2] W. Bank, “Climate risk country profile: Indonesia,” The World Bank Group, 2021. https://climateknowledgeportal.worldbank.org/country/indonesia/vulnerability
- [3] D. Miljković, “Brief Review of Self-Organizing Maps,” Proc. MIPRO, no. May, 2017, doi: 10.23919/MIPRO.2017.7973581.
- [4] I. Dermawan, A. Salma, Y. Kurniawati, and T. O. Mukhti, “Implementation of the Self Organizing Maps (SOM) Method for Grouping Provinces in Indonesia Based on the Earthquake Disaster Impact,” UNP J. Stat. Data Sci., vol. 1, no. 4, pp. 337–343, 2023, doi: https://doi.org/10.24036/ujsds/vol1-iss4/83.
- [5] L. R. Iyohu, I. Djakaria, and L. O. Nashar, “Perbandingan Metode K-Means Clustering dengan Self-Organizing Maps ( SOM ) untuk Pengelompokan Provinsi di Indonesia Berdasarkan Data Potensi Desa,” J. Stat. dan Apl., vol. 7, no. 2, pp. 195–206, 2023, doi: https://doi.org/10.21009/JSA.07208.
- [6] M. N. Bangun, O. Darnius, and Sutarman, “Optimization Model in Clustering The Hazard Zone After an Earthquake Disaster,” Sink. J. dan Penelit. Tek. Inform., vol. 6, no. 3, pp. 2089–2095, 2022, doi: https://doi.org/10.33395/sinkron.v7i3.11598.
- [7] I. H. Rifa, H. Pratiwi, N. Sciences, and U. S. Maret, “Clustering of earthquake risk in indonesia using k-medoids and k-means algorithms,” Media Stat., vol. 13, no. 2, pp. 194–205, 2020, doi: 10.14710/medstat.13.1.194-205.
- [8] T. Kohonen, Self-Organizing Maps (3rd ed.). Berlin, Heidelberg: Springer, 2001. doi: https://doi.org/10.1007/978-3-642-56927-2.
- [9] N. P. N. Hendayanti, G. A. M. A. Putri, and M. Nurhidayati, “Ketepatan Klasifikasi Penerima Beasiswa STMIK STIKOM Bali dengan Hybrid Self Organizing Maps dan Algoritma K-Mean,” J. Varian, vol. 2, no. 1, 2019, doi: 10.30812/varian.v2i1.316.
- [10] M. Kossakov, A. Mukasheva, G. Balbayev, S. Seidazimov, and D. Mukammejanova, “Quantitative Comparison of Machine Learning Clustering Methods for Tuberculosis Data Analysis †,” Eng. Proc. MDPI, vol. 60, no. 20, 2024.
- [11] G. N. Brock, S. Datta, and S. Datta, “clValid : An R Package for Cluster Validation,” J. Stat. Softw., vol. 25, no. 4, 2008, doi: 10.18637/jss.v025.i04.
- [12] BPBD Jawa Timur, “Dokumen Kajian Risiko Bencana Nasional Provinsi Jawa Timur 2022–2026,” 2022. [Online]. Available: https://files.bpbd.jatimprov.go.id/DOKUMEN/DOKUMEN KRB NASIONAL JAWA TIMUR 2022-2026.pdf
- [13] B. J. Barat, “Dokumen Kajian Risiko Bencana Nasional Provinsi Jawa Barat 2022-2026,” 2022. [Online]. Available: https://inarisk.bnpb.go.id/pdf/Jawa Barat/Dokumen KRB Prov. Jawa Barat_final draft.pdf
- [14] I. G. Tejakusuma, E. H. Sittadewi, and R. Fitriani, “Hydrometeorological hazard detection and warning for risk reduction in West Java , Indonesia Hydrometeorological hazard detection and warning for risk reduction in West Java , Indonesia,” IOP Conf. Ser. Earth Environ. Sci., vol. 1192, no. 012043, 2023, doi: 10.1088/1755-1315/1192/1/012043.
- [15] A. Secretariat, “Changing disaster risk landscape due to climate change in ASEAN,” Jakarta, 2025.